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As is well known, for a number of reasons there are considerable
obstacles to determining the true heat-tansfer coefficients in a fluid-
ized bed. These include the difficulties in establishing the average
motive force, i.e., reliable determination of the temperatures of the
liquefying agent and the solid particles, In fact, an unsheathed ther-
mocouple measures not the temperature of the liquefying agent of the
solid particles but an intermediate value. At the sametime, asheathed
thermocouple does not measure the exact temperature of the liquefy-
ing agent, due to heat losses and leakage through the sheathing system
of the thermocouple.

A method is proposed below for determining the heat-~transfer co-
efficient as an external problem assuming the solid phase is complete-
ly mixed and that the gaseous (liquid) phase moves with ideal displace-
ment. With this method, which can also be used to determine the
mass~-transfer coefficient, it is not necessary to measure the tempera~
tures of the liquefying agent and the solid particles in the bed. It is
only necessary to determine the temperatures of the liquefying agent
tip at the inlet to the bed and of the solid particles €4 at the initial
moment T = 0, and also the temperature of one of the phases (8 or
toup) At the outlet of the bed at an arbitrary time 7.

Let us consider the unsteady heating (cooling) of a bed that oper-
ates without input and output of the solid phase. Let a liquefying a-
gent (for example, a gas) in the amount of G kg/hr (with specific
heat c) enter a fluidized bed containing G kg of solid particles(with
specific heat cp). As a result of heat transfer with the gas at the ini-
tial temperature tj,, the bed is heated from temperature 6 at 7= 0
to 9 at time 7.

Let us calculate the changes in the temperatures of the gas and sol-
id material for a known contact surface F) and average heat-transfer
coefficient oo over F_. At any time for an arbitrary unit particle sur-
face dF included within a unit height of the bed, we can write

a (t— 0) dF = —Gedt, (1)
hence
Gec dif
= f e ——— —— 2
=1 — IF (2)

Let us differentiate this equation, assuming that the particle tempera-
ture is constant throughout the volume of the bed (and thus over F);
that is, d6/dF = 0:

d2¢ a dt
daFr T Ge dF
hence
aF
t:Aexp(~~G—c>+B (3)
and
d—tz—A z exp (—— EF\). (4)
dF Ge Ge

The constants of integration A and B are determined from the follow-
ing boundary conditions:
1) at F =0, t = tip; then from (3)

ty=A+B; (5)
2) from (1) and (4), we have

dtv @ t—0) 4 a aF
aF ~ T U =—AE e’“’(— Gc>’
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and then whenF = 0
A=t —0. (6)
Combining Eqs. (5) and (6), we obtain B = 6, and then from (3)
we find t at time 7 after contact with the surface F:
f=(tj — 0) exp (—a F/Ge) + 0 =
={iy exp (—a F/Ge) 4 8 [1— exp (—  F/Gc)]. (N

For the next calculation, we must know the instantaneous average
over the entire surface 5 of the gas temperature t,:

1 . Ge
oy =5~ S 14F =8+ (g — O I —exp (—a Fp/Ge)] —— . (®)
P £y p

Hence, the average instantaneous motive force over FP is

G
fgg— 8 = (£ — D)y = (1, — 0) [1— exp (— a Fp/Gc)] ;—;; 9)

Now let us consider the heating of the bed with time, For the unit
interval dr
an(tﬂﬁ)avdT. = Gye,d 0,
Hence, considering (9), after integration we obtain

tip —Y uc
In —2—°% -
tin“ﬂ GTCT

[1— exp (—a Fp/Gc)). (10)

This equation can be solved for € = 6(7) and, with the aid of expres~
sion (7), also for t = t(7,F):

“Get
[} =tin—(tin——ﬂo) exp {-« — [l —exp (—an/Gc)]], (11)

(¢ X
aF
==ty — (G — 0o [l—exp (—— E-)]X
Ge a F
— G e (=
X exp { Guc ll exp( Ge )]J . (12)

By simple wansformations we can also obtain an expression for the
average motive force over time T corresponding to the over-all heat-

transfer equation Q = ocFP Doy

Gc { a KR fin—28
By = [1~ exp kw _GEE>] 0— ﬂo)/<ln —;"—;6‘—’—) .8

P / in .

Expression (10) is most convenient for calculating o from experimen-
tally measured tjp, G, 7, and 6, and expression (12) is most conve-
nient when calculating o from tin, €9, 7, and t = toye whenF =

= E,. It is not difficult to solve these equations for . For example,
from (10) we obtain

Grep

Gc fin — B¢ \~1
=—In|1— e 14
¢ Fp f (1 Ge = a a4

tin — 8

Thus, it is easy to calculate o by measuring 6 or t at a knowntime
7 (in the former case, this can be done by cutting off the pressure at
time 7; in the latter case, by measuring the gas temperature above
the bed) and if we know 0 and t;,. The accuracy of tiis determina-
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tion naturally depends upon the correctness of ihe model used (ideal
gas displacement and complete mixing of the solid particles) and also
upon the measurement method (the accuracy with which 7, tip, and

6, are determined, elimination of the input effect, etc.). Moreover,
the obtained o values will come closer to the true values as the effects
that result in effective o are reduced (the longitudinal heat conduc-
tivity of the gas, discrepancy between the calculated and actual con-
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tact surfaces, etc.). In particular, at high Reynolds numbers (Re >
> 10%), this method should give heat-uransfer coefficients that are
close to the true values.
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